Ученые СПбГУ открыли новый механизм формирования нанокристаллов для оптоэлектронных устройств
Ученые Санкт‑Петербургского государственного университета обнаружили новый механизм формирования нитевидных нанокристаллов типа «стержень‑оболочка» из индия, галлия и азота с высоким содержанием индия в стержне. Сформированные наноструктуры демонстрируют интенсивное излучение при комнатной температуре и могут быть использованы для создания новых светодиодов и лазеров.
Сплав InGaN (нитрид индия‑галлия), используемый сегодня для создания силовой электроники и светодиодов, также перспективен для газовых сенсоров, солнечных батарей и водородных ячеек. Его массовое применение ограничено — это связано с трудностями синтеза стабильного слоя.
Результаты исследования опубликованы в высокорейтинговом научном журнале Nanoscale Horizons.
Недавно ученые Санкт‑Петербургского университета подробно изучили механизмы формирования трехмерных (непланарных) структур на основе материала InGaN, применив научный и систематический подходы к описанию процессов роста этих структур. На основе таких соединений в СПбГУ уже создаются прототипы светодиодов, газовых сенсоров, ячеек для разложения воды и другое.
Как отмечают физики, в привычной научному миру «планарной» форме сложные микроэлектронные структуры создаются на плоской поверхности несколькими последовательными этапами нанесения материалов, травления и литографии, чтобы сформировать различные слои и компоненты устройства. Однако в случае InGaN формировать такие «плоские» структуры классическим способом не получается.
Из‑за эффекта разрыва растворимости получение слоев InGaN с высоким содержанием индия (In) связано с распадом этого материала на отдельные фазы и образованием значительного количества дефектов. Также к образованию дефектов приводит рассогласование постоянных решеток этих материалов. Все это значительно снижает работоспособность приборов, в которых применяются данные структуры.
Физики Санкт‑Петербургского университета открыли новый механизм формирования нанокристаллов на основе материала InGaN непосредственно на поверхности кремния.
В частности, мы впервые объяснили новый механизм формирования InGaN нитевидных нанокристаллов, обладающих спонтанно сформированной структурой типа «стержень‑оболочка». Результаты экспериментальных исследований показали, что процентное содержание In в стержне нанокристалла может составлять около 40 % и выше, а в оболочке — около 4 %.
Автор разработки, руководитель лаборатории новых полупроводниковых материалов для квантовой информатики и телекоммуникаций СПбГУ Родион Резник
«Важно отметить, что достижение такого высокого содержания индия в качественных InGaN слоях крайне затруднительно, однако нам это удалось», — рассказал автор разработки, руководитель лаборатории новых полупроводниковых материалов для квантовой информатики и телекоммуникаций СПбГУ Родион Резник.
Увеличение содержания индия в InGaN приводит к изменению длины волны (другими словами, изменению цвета излучения) из таких наноструктур, что значительно расширяет потенциал для применения этого материала при создании новых эффективных светодиодов, лазеров, солнечных батарей и много другого. Интенсивное излучение из полученных учеными наноструктур говорит о высоком оптическом качестве нового материала.
«Результаты теоретических исследований впервые показали, что образование гетероструктур типа "стержень‑оболочка" в бескатализных InGaN нитевидных нанокристаллах связано с периодическими изменениями условий роста на вершине таких наноструктур. Оказалось, что соотношение атомов III и V групп таблицы Менделеева на вершине изменяется даже во время роста одного монослоя такой наноструктуры», — пояснил руководитель лаборатории новых полупроводниковых материалов для квантовой информатики и телекоммуникаций СПбГУ Родион Резник.
По словам физика Университета, на первом этапе роста нанокристалла условия сбалансированы, что позволяет преодолеть эффект разрыва растворимости и формироваться стержню нанокристалла, обогащенному индием. Затем условия меняются на обогащенные III группой, и механизм формирования оболочки меняется. При этом оболочка может быть эффективно удалена химическими методами без ухудшения качества стержня.
Отметим, что сотрудники лаборатории новых полупроводниковых материалов для квантовой информатики и телекоммуникаций СПбГУ занимаются изучением новых материалов для микроэлектроники: источников одиночных фотонов, эффективных светодиодов, солнечных элементов, лазеров, нанопьезогенераторов, а также интегрируют их с кремниевой платформой. Все эти достижения — продолжение работ по совершенствованию квантовых технологий для микроэлектроники, заложенной двумя нобелевскими лауреатами: выпускником СПбГУ, нобелевским лауреатом по химии Алексеем Екимовым и организатором и ректором СПбАУ Жоресом Алферовым. Подробнее о своей работе Родион Резник рассказывал в подкасте СПбГУ «Генрих Терагерц».
Санкт‑Петербургский государственный университет — старейший университет России — был основан 28 января (8 февраля) 1724 года, когда Петр I издал указ об учреждении Университета и Российской академии наук. Сегодня СПбГУ — научный, образовательный и культурный центр мирового уровня. В 2024 году Санкт‑Петербургский университет отмечает свой 300‑летний юбилей.
План мероприятий в рамках празднования юбилея Университета был утвержден на заседании оргкомитета по празднованию 300‑летия СПбГУ, которое провел заместитель председателя Правительства РФ Дмитрий Николаевич Чернышенко. Среди таких мероприятий — присвоение малой планете имени в честь СПбГУ, выпуск банковских карт со специальным дизайном, брендирование самолета авиакомпании «Россия» и многое другое. В честь 300‑летия Санкт‑Петербургского государственного университета в почтовое обращение вышла марка, на которой изображены здание Двенадцати коллегий и памятник графу С. С. Уварову. Также с космодрома Байконур была запущена ракета «Союз» с символикой Университета.
По решению губернатора Санкт‑Петербурга Александра Дмитриевича Беглова 2024 год в Северной столице объявлен годом Санкт‑Петербургского университета. В день 300‑летия СПбГУ на Ростральных колоннах зажгли факелы. Дворцовый мост украсили флаги Университета, а общественный транспорт — его символика. В мае 2024 года Университет впервые принял участие в праздновании Дня города и стал отдельной площадкой для мероприятий. Также СПбГУ запустил сайт, посвященный юбилею, с информацией о выдающихся универсантах, научных достижениях и подробностях празднования.