Физики СПбГУ смоделировали ключевой процесс для эволюции звезд
Ученые Санкт‑Петербургского государственного университета смоделировали механизм слияния ядер, изучив зависимость астрофизического S‑фактора в области энергий, характерных для звезд. Предложенный ими подход дает хорошую возможность для оценки взаимодействия ядер в звездах, получения информации о происхождении химических элементов и может использоваться при планировании новых экспериментов в данной области.
Природа устроена так, что для элементарных частиц зачастую не работают правила классической физики. Например, мячик всегда отскочит от стены, а вот атомное ядро или элементарная частица иногда могут сквозь нее пройти. Это называется туннельным эффектом и описывается, как и другие подобные явления, квантовой механикой. В первом приближении туннельный эффект можно рассмотреть как прохождение бесструктурной (точечной) частицы сквозь потенциальный барьер известной формы. Простейшим примером является кулоновский барьер — явление электростатического отталкивания между зарядами одного знака. В классической физике, если частице не хватает энергии для преодоления отталкивания, она никогда не сможет подойти вплотную к объекту с точно таким же знаком заряда. Потому что плюс отталкивается от плюса, а минус, как известно, от минуса! Однако в квантовом мире такое возможно. Эту модель можно усложнить, приблизив к реальности, за счет добавления новых эффектов (возможность притяжения на малых расстояниях, поглощения и т. д.).
Результаты исследования опубликованы в «Известиях Российской академии наук. Серия физическая». Работа была в выбрана в качестве лучшей статьи номера.
Особенно важно изучение данных явлений в ядерной физике при описании реакций в области низких энергий, когда два ядра, преодолевая (за счет туннелирования) взаимное отталкивание, подходят друг к другу настолько близко, при этом формируя одну ядерную систему. Такие процессы получили название — реакции слияния (Fusion). С этой точки зрения особенно многообещающим является изучение реакций слияния ядер с энергиями ниже кулоновского барьера. Именно они играют ключевую роль в эволюции звезд и определяют сценарии образования сверхновых. Однако в земных условиях изучать экспериментально подобные явления сложно. В звездах содержится огромное количество вещества, и живут они миллионы лет, так что возможно протекание реакций даже с очень маленькой вероятностью. А на Земле физикам приходится пользоваться очень небольшим количеством вещества и выполнять все необходимые измерения буквально за считанные дни.
Ученые СПбГУ использовали в своей работе модель, с которой в свое время работал нобелевский лауреат Уильям Фаулер, — модель прямоугольной потенциальной ямы. Модель имеет всего три параметра: радиус взаимодействия, действительную часть потенциала, которая описывает притяжение или отталкивание, и мнимую часть, показывающую, насколько интенсивно ядра «сливаются» вместе в процессе взаимодействия.
«Все новое — это хорошо забытое старое. Модель прямоугольной потенциальной ямы — одна из наиболее часто встречающихся в квантовой механике, и Фаулер в своих пионерских работах проанализировал реакции в звездах именно на ее основе. Но в то время был сильный дефицит экспериментальных данных! Изучено‑то было всего несколько реакций — и с немалыми, по звездным меркам, энергиями. Снова к этой модели вернулись несколько лет назад, и быстро стало понятно, насколько она полезна и удобна для использования в астрофизике», — пояснили авторы данного исследования доценты СПбГУ Сергей Торилов, Владимир Жеребчевский и старший преподаватель Николай Мальцев.
За последние годы было получено значительное количество экспериментальных результатов по слиянию ядер при низких энергиях, был обнаружен ряд интересных эффектов, которые еще предстоит изучить и понять. Для этого нам необходима простая модель, с которой далее можно сравнивать как экспериментальные, так и теоретические результаты.
«В нашей работе мы поставили цель проанализировать важные с точки зрения астрофизики данные, известные на сегодняшний день, и получить систематику параметров, позволяющую уточнить предсказания для астрофизического S‑фактора в области энергий, характерных для звезд», — отметили ученые.
Астрофизический S‑фактор — мера интенсивности взаимодействия ядер в ядерной астрофизике, позволяющая учесть эффекты, возникающие при реакциях с малыми энергиями.
Для изучения были выбраны изотопы средней группы масс — от углерода до кремния. Это связано с тем, что тяжелые ядра играют незначительную роль в образовании новых элементов в звездах, а легкие элементы уже хорошо изучены.
«Полученные нами приближения позволили очень хорошо описать зависимость астрофизического S‑фактора от энергии для всех рассмотренных реакций и практически вплотную подойти к энергиям, характерным для звезд», — заключили специалисты.
Результаты работы важны не только для астрофизики. Точного понимания реакций с использованием тяжелых ионов требуют и фундаментальные задачи: синтез новых сверхтяжелых элементов, изучение поведения ядер вблизи границ стабильности, когда они перегружены протонами или нейтронами, изучение экзотических распадов на большое число частиц. Также эти реакции используются и для чисто прикладных целей: радиационное материаловедение, ядерная медицина, производство мембранных фильтров.
Ученые планируют дальнейшие исследования в этой области — в частности, предполагается дать оценку применимости модели для случая тяжелых ядер с целью изучения обнаруженных в недавно выполненных экспериментах новых закономерностей и эффектов.
Санкт‑Петербургский государственный университет — первый университет России был основан 28 января (8 февраля) 1724 года, когда Петр I издал указ об учреждении Университета и Российской академии наук. Сегодня СПбГУ — научный, образовательный и культурный центр мирового уровня. В 2024 году Санкт‑Петербургский университет отметит свой 300‑летний юбилей.
План мероприятий в рамках празднования юбилея Университета был утвержден на заседании оргкомитета по празднованию 300‑летия СПбГУ, которое провел заместитель председателя Правительства РФ Дмитрий Чернышенко. Среди таких мероприятий — присвоение малой планете имени в честь СПбГУ, выпуск банковских карт со специальным дизайном, создание почтовых марок, посвященных истории первого университета России, брендирование самолета авиакомпании «Россия» и многое другое. Кроме того, Университет запустил сайт, посвященный предстоящему празднику, с информацией о выдающихся универсантах, научных достижениях и подробностях подготовки к юбилею.